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Introduction
During most of the twentieth century there was re-
markable agreement about the right way to present
results in (pure) mathematics. The subject con-
sisted of a list of theorems, each of which was
proved from an underlying set of axioms using
what were called rigorous arguments. In a few
cases, such as Peano arithmetic, the truth of the ax-
ioms seemed self-evident, but in many cases they
simply defined the domain of discourse. For math-
ematicians, talking as mathematicians rather than
as amateur philosophers, philosophical distinc-
tions between the invention and discovery of new
concepts did not affect the way they practised
their subject.

In this paper we will argue that developments
of the classical Greek view of mathematics do not
adequately represent current trends in the sub-
ject. It proved remarkably successful for many cen-
turies, but three crises in the twentieth century
force us to reconsider the status of an increasing
amount of current mathematical research.

The apparent consensus among mathematicians
as mathematicians stands in stark contrast to the
disagreements between those studying the phi-
losophy of mathematics. This subject has been
dominated by a single issue. This concerns the pe-
culiar status of mathematical objects: if one main-
tains that they exist in some Platonic realm, it
seems impossible to give any account of how we,
as creatures embedded in space and time, can
come to know about them. The argument that we
may have no access to these objects but can nev-
ertheless work out what they are like by the use of
our reasoning powers is unconvincing for the fol-
lowing reason (among others): we could appar-
ently follow exactly the same lines of reasoning
about the properties of and relationships between
mathematical entities even if the Platonic realm did
not exist. Whole books have been devoted to the
discussion of the relationship between ontology and
epistemology in mathematics, but it is fair to say

that agreement about its solution is not imminent
[5], [6], [25], [26].

Mathematicians as amateur philosophers are
no more agreed about the status of their subject
than are philosophers. As representatives of many
others we cite Roger Penrose as a committed real-
ist (i.e., Platonist) [20], [21] and Paul Cohen as an
anti-realist [12], [13]. Einstein was clear that math-
ematics was a product of human thought and that,
as far as the propositions of mathematics are cer-
tain, they do not refer to reality [16]. The author
of the present article has always been critical of Pla-
tonism [14]; he now fully accepts the existence of
mathematical entities, but only in the Carnapian
sense [15]. This allows mathematical theories to be
products of the human imagination, but never-
theless to have definite properties just as chess and
Roman law do; it also allows numbers to exist in
the same sense as the black king does in chess. For-
tunately mathematicians as mathematicians do not
need to refer to their philosophical beliefs, and
hence can achieve a large degree of agreement
amongst themselves. This agreement is, however,
not total: constructivists adopt a strict, algorithmic
notion of existence that is more acceptable to ap-
plied mathematicians, numerical analysts, and lo-
gicians than it is to most pure mathematicians [7],
[8], [9], [15].

Kurt Gödel’s astonishing insights in the 1930s
created the first of the three crises to which we
refer. He demonstrated that within any sufficiently
rich axiomatic system there must exist certain
statements that cannot be proved or disproved. He
also established that the consistency of arithmetic
was not provable. There have been many discus-
sions of his work, but these frequently involve im-
plicit philosophical assumptions on the part of the
writer. For example, the belief of Gödel himself
that the continuum hypothesis must be either true
or false independently of whether we can prove this
fact reveal his wholehearted commitment to Pla-
tonism in mathematics. Gödel’s theorems are tech-
nical in nature and do not establish that there is a
fundamental distinction between truth and prov-
ability in mathematics without the insertion of
extra philosophical assumptions.
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It might be thought that Gödel’s attitude to-
wards his own results must be of great signifi-
cance, but he was a somewhat eccentric figure; his
argument that one can have the same confidence
in mathematical intuition as in sense perception
does not sit happily with the consensus of psy-
chologists that sense perception is heavily depen-
dent on constructions within the human mind [11],
[14, p. 38]. Other giants in the field have taken
quite different attitudes. For example, Paul Cohen,
who eventually proved the independence of the 
continuum hypothesis, did not share Gödel’s views,
believing that set theory was no more than an 
axiomatic structure: it was not the partial de-
scription of an external entity [12], [13].

In spite of the enormous literature emphasizing
the importance of Gödel’s work for the foundations
and philosophy of mathematics, it had very little
effect within mathematics itself for several decades,
excepting logic, regarded as one among many fields
of mathematics. Its relevance within mainstream
mathematics only emerged when it was discov-
ered that the word problem and the isomorphism
problem for finitely presented groups were algo-
rithmically insoluble and, as a consequence, the
homeomorphism problem for 4-manifolds was also
insoluble. Gradually more and more such issues
have been revealed, but in spite of this, most math-
ematicians ply their trade exactly as they would
have done if Gödel had never existed.

Since 1970 two other crises have arisen in math-
ematics, neither of which was anticipated, just as
Gödel’s work had not been. Both involve the issue
of complexity: proofs that are too long and com-
plex for anyone to be able to assert with total con-
fidence that the theorems claimed are certainly
true. These crises have not been discussed much
in the philosophical literature, even though both
are starting to have more impact on the way that
mathematicians think about their subject than
Gödel’s work ever has. In October 2004 the Royal
Society held a two-day discussion meeting in Lon-
don on “The Nature of Mathematical Proof” to dis-
cuss possible ways of responding to them; see [10].
The meeting provided a variety of insights into
the issues involved but no solutions. There was ev-
idence of a serious communication problem be-
tween the mathematicians and computer scien-
tists present.

At first sight it seems obvious that the “crises
of complexity” that we will describe are epistemo-
logical in character and say nothing about the on-
tology of mathematics. On the other hand some
mathematicians prefer to think of mathematics as
involving a process of creation rather than dis-
covery, just as in architecture. One is free to pur-
sue many different ideas as long as one follows 
certain basic rules and need not accept that dis-
tinctions between ontology and epistemology are

relevant. The crises may simply be the analogy of
realizing that human beings will never be able to
construct buildings a thousand kilometres high
and that imagining what such buildings might “re-
ally” be like is simply indulging in fantasies.

Computer-Assisted Proofs
The first example of a major mathematical theo-
rem that depended on computer assistance was the
four-colour theorem, proved by Appel and Haken
in 1976 [1], [2]. It caused great uneasiness among
some mathematicians for two reasons. One was that
it was considered that one could not be certain that
a machine had performed a calculation correctly
if one could not check every line of the proof by
hand. At that time “proper” theorems had proofs
that were agreed to be unassailable. Mistakes might
occasionally occur, but they could and would be rec-
tified with the passage of time. The other issue was
that some mathematicians considered that they
were not interested in whether theorems were true
but why they were true. A proof that did not gen-
erate understanding was of no interest to them.

The four-colour theorem did not have any very
important applications, and for a considerable time
it was possible to regard it as an aberration. Per-
haps it was not really very interesting after all and
had only acquired fame because it was easily stated.
However, as time has passed, and computers have
become more available, the number of computer-
assisted proofs has slowly grown. It would serve
no useful purpose to enumerate all such cases, so
we turn to the most recent example.

The Kepler problem is to determine the best
way of packing identical solid spheres in three-
dimensional space, so as to maximize their aver-
age density. The expected solution has been known
for many years, and involves packing the spheres
exactly as oranges are displayed in every grocer’s
shop. In 1998 Tom Hales announced the rigorous
solution of this problem using a combination of
geometrical analysis and heavy computer calcula-
tions. Annals of Mathematics solicited his paper and
set up a team of twenty of the top experts in the
field to referee the work. They started by holding
a conference in Princeton to decide their strategy.
As the years passed referees gradually left the
team, and early in 2004 the effort of refereeing the
paper had to be discontinued. The Annals editors
decided to publish the “theoretical part” of the
paper and send the computer-based part to a more
appropriate journal for publication. One of the An-
nals editors, Robert MacPherson, admitted that the
(unpublished) policy of the Annals editors for such
papers had failed; see [18].

At the Royal Society meeting there were lively
discussions about whether formal proofs of the cor-
rectness of programs could have made a contri-
bution to the refereeing process. According to
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MacPherson the panel did not have any member
who understood the technology of program cor-
rectness proofs, so this way of increasing confi-
dence in the computer-assisted part of the proof
was not considered. The programs had not been
written with the possibility of formal verification
in mind, and it is generally recognized that this
greatly impeded any attempt to apply such meth-
ods.

Another possibility would be to write a totally
new program that implemented the ideas in the the-
oretical part of the proof. This was dismissed as
being too much to demand of any group of refer-
ees, a statement that shows how little mathemati-
cians appreciate the labour involved carrying
through projects to completion in other areas of
science, for example the Cassini space probe to Sat-
urn. Also relevant is the fact that as the refereeing
process continued it became apparent that the
computations were so specific to the particular
problem that they provided few insights that could
be applied to other similar problems.

The Kepler problem is closely related to finding
the ground state energy of a large assembly of
bodies, which may have a variety of shapes and
ways of interacting with each other. There is a
huge number of similar minimization problems,
and it is infeasible to understand the field by solv-
ing them one at a time by highly specific compu-
tations. If there is no other way perhaps most of
these problems are not so interesting after all.
However, the Kepler problem itself has connec-
tions with several other issues of known impor-
tance, including the theory of error-correcting
codes.

On the positive side I must mention the steadily
increasing use of computers, which are trans-
forming the work of pure mathematicians. Here are
a few randomly chosen examples, which fall into
several different categories. Computer algebra can
transform hopelessly lengthy calculations and has
been used extensively in various fields. The inves-
tigation of chaotic dynamical systems could not
have progressed without the possibility of nu-
merical experimentation; it is true that the existence
of chaotic phenomena was discovered by Henri
Poincaré at the end of the nineteenth century, but
progress in understanding the subject had to wait
for the development of computers. The enormous
differences between the spectral behaviour of self-
adjoint and non-selfadjoint matrices came to light
as a result of numerical experiments and has
spawned the new field of pseudospectra, which is
now being studied as an area of rigorous mathe-
matics in its own right [28].

Controlled numerical calculations are also play-
ing an essential role as intrinsic parts of papers in
various areas of pure mathematics. In some areas
of nonlinear PDE, rigourous computer-assisted

proofs of the existence of solutions have been pro-
vided; [22] and [23] provide typical examples. These
use interval arithmetic to control the rounding er-
rors in calculations that are conceptually com-
pletely conventional. The key is to provide a
rigourous proof of an inequality that is then used
as a vital ingredient in the proof of the theorem.
In principle the calculations could be done by hand,
but in practice this would be quite impossible.

Formal Verification of Proofs
Anyone who has written even short computer pro-
grams knows that they are much less forgiving
than mathematics. Tiny errors of syntax are caught
by the compiler and stop the program completely.
The multiple uses of variable labels do not stop the
program running, but they are usually easily de-
tected by the fact that the output is rubbish. Math-
ematical errors are often detected by running the
program on a very simple problem of the same type,
to which the solution is already known. Varying the
parameters of the problem allows one to check
that the effects are as expected. Possible errors or
inaccuracies in standard routines built into a soft-
ware package are more difficult to detect, since the
effects are likely to be small or infrequent. Never-
theless programs of only a few hundred lines in
length can be extremely powerful aids to mathe-
maticians, and experience shows that they can be
made to function as expected after some debug-
ging. The real problems occur with much bigger pro-
grams and are a major problem: the British Civil
Service recently had to resolve a flawed software
upgrade that stopped the work of an entire de-
partment for almost a week.

The formal verification of software packages is
simultaneously an area of applied logic and a busi-
ness. The increased reliability of Windows XP has
been achieved with the aid of powerful program
analysis tools, which are themselves based on the
mathematics of program correctness which was
originally explored with the goal of formal verifi-
cation. However, in some respects the problem
faced by computer scientists is quite unlike that
faced by mathematicians. The specification of some
software, such as Java, may run to more than a hun-
dred pages, far longer than would be acceptable for
the statement of a theorem. It is not clear in some
cases whether unexpected behaviour of a software
package should be called a bug or a feature.
Crashes, often caused by buffer overflows, are
clearly the consequences of design faults, but one
cannot say the same of the refusal of LATEX to allow
the user to do something that the designers never
thought of. Inadequate specifications of large soft-
ware projects are a much more common cause of
commercial disasters than incorrect implementa-
tions of the specifications.
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The proven value of formal proofs of correctness
in the software context has encouraged some com-
puter scientists to try to apply the same methods
to mathematics, but this is, at present, an imma-
ture field. The following comments indicate that
there are likely to be serious difficulties in imple-
menting formal proofs of correctness in my area
of analysis. They may well not be so relevant to
other fields, such as logic or algebra, but I leave such
judgements to others. I give some details in order
to provide some feeling for the issues, but these
are not essential. Almost every proof of a theorem
in analysis alludes to external facts that are fre-
quently not spelled out because they are assumed
to be a part of the background of the reader. A
paper might well start by stating that it intends to
study the spectral theory of the Laplacian on a
bounded Euclidean region subject to Dirichlet
boundary conditions. There are hundreds, possi-
bly thousands, of papers even on this tiny subject,
and the writer will assume a familiarity with a sub-
stantial part of the literature. On some occasions
he will refer to papers containing recent results that
he considers the reader might not know about, but
in many cases he will use older results without ref-
erence, confident that almost everyone who is well
enough educated to want to read the paper will al-
ready know these.

There are real traps into which one can fall, and
people sometimes do fall into them. When using a
particular result it is possible to forget that there
are often many versions of a theorem in analysis,
with similar conclusions, but depending on dif-
ferent technical hypotheses. Monographs often
make standing hypotheses, which are mentioned
at the start of some section or chapter, but not any-
where near the statement of the theorem being
quoted.

It is commonplace to justify a step in a proof by
reference to some classical result for which no ref-
erence is given. I was challenged recently by one
of my students in relation to Mercer’s theorem. Mer-
cer’s original version referred to kernels on a one-
dimension interval, but I was using a more general
version of the theorem without explanation. When
he asked me to justify my comment I was unable
to find a statement of the theorem in the literature
that was sufficiently general to cover the applica-
tion that I was making. After looking through a half
dozen books I eventually decided to write out the
proof. It was obvious to me, and would have been
to anyone who had read the original proof in suf-
ficient detail, that the classical restriction to an in-
terval was unnecessary, but it nevertheless took me
four pages to describe and prove a sufficiently
general form of the result. I did not regard this as
a serious gap, in the sense that I was confident
throughout that the result needed was correct, and

that it would be obtained by extracting the core of
Mercer’s argument. The student ended up satisfied.

It seems that mathematics is carried in people’s
heads, and that it is malleable in the sense that ex-
perts “know” almost instinctively whether it is pos-
sible to modify standard theorems to fit the con-
text being discussed; perhaps this is the definition
of an expert. Every now and again someone sum-
mons up the energy to write out a fairly compre-
hensive account of a field as a monograph. This pro-
vides a huge service, by giving a systematic account
of a field to which one can then refer. Very fre-
quently it also misrepresents the literature some-
what, because an author is almost bound to adopt
a particular, uniform context in his monograph, and
many of the theorems that he proves will be true
under weaker conditions.

Finite Simple Groups
The third crisis that we discuss is also one con-
cerning complexity, but it is in some ways more se-
rious. Since it does not involve computers, we can-
not dismiss it simply by declaring computer-
assisted proofs illegitimate, i.e., not a part of what
we call pure mathematics. In addition, the exam-
ple that I will describe involves one of the most cen-
tral concepts in mathematics: group theory.

During the 1970s more than a hundred group
theorists came together in a consortium devoted
to classifying all finite simple groups. The task
was a massive one and provided what is still the
only example of industrial scale pure mathemat-
ics. Under the leadership of Daniel Gorenstein the
problem was broken up into smaller packages that
were entrusted to various groups around the world.
Intensive work over ten years led to a complete list
of all finite simple groups: three infinite families,
together with twenty-six sporadic (i.e., exceptional)
groups. The existence of the largest of these, the
so-called Monster, was only proved with the aid of
a computer. Fortunately we can discuss the crisis
surrounding this problem without knowing what
the classification is, and without even knowing
what a finite simple group is.

What happened after 1980 has been as inter-
esting as the classification itself. One positive de-
velopment in this period was the discovery of a
method of avoiding the use of computers in the
proof of the existence of the Monster. It was ap-
preciated that the work of the different groups
needed to be integrated into a single coherent ac-
count, but attempts to do this led to the discovery
of many gaps in the proofs. Many of these were
patched up, but one seemed very serious, and in
1990 claims that the classification was complete
had to be reconsidered. Eventually this gap was also
filled by Aschbacher and Smith and, once again, it
seems likely that the proof is sound [3]. However
only about five out of the twelve volumes of the
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final proof have been published, almost twenty-five
years after the theorem was “proved”; see [3], [27]
for details. Michael Aschbacher, one of the people
most heavily involved in the project, admits the pos-
sibility that a new finite simple group might one
day be discovered. If that group has characteristics
sufficiently similar to the others, this might not be
too disturbing, but he accepts that the discovery
of a new finite simple group quite different from
the others would throw the problem wide open
again; see [4]. Note that Jean-Pierre Serre is also very
cautious about accepting the proof [24].

Aschbacher has noted that the proof seems to
be robust. By this he means that every gap so far
discovered can be plugged with only a moderate
amount of extra work, leaving the main lines of the
proof unaffected. Unfortunately, this does not
imply that the result is correct. A chain is as strong
as its weakest link, and the fact that every faulty
link has so far been replaced by a sound one pro-
vides no guarantee that it will remain so. If one
thinks that the proof is more like a web, in which
flaws in many threads would not jeopardize the in-
tegrity of the whole, then it is possible that the web
contains a large enough hole for a fly to escape
through it. Most flies might be caught by the web,
but not necessarily all.

The idea of comparing mathematical knowledge
to a web of interrelated facts de-emphasizes the role
of linear logic in favour of the confidence associ-
ated with a highly redundant structure. This is not
a new idea, but it has not been emphasized by
mathematicians much until recently. Aschbacher
uses a related analogy in [4], invoking the paradigm
of biology as an information-rich subject in which
there is an overabundance of different ways of or-
ganizing the data, and contrasting this with “clas-
sical mathematics”.

The completion of the classification project (in
the sense of the publication of a connected ac-
count of the entire calculation) is threatened by the
attrition of the leading players by death and re-
tirement. Within ten years most of them may have
stopped working, and there may well be too few
left with the necessary deep understanding of the
subject to complete the task. Even if the project is
brought to a conclusion, it is likely that fewer than
a dozen mathematicians will be able to claim a
reasonably comprehensive understanding of the
main lines of the proof.

We have thus arrived at the following situation.
A problem that can be formulated in a few sen-
tences has a solution more than ten thousand
pages long. The proof has never been written down
in its entirety, may never be written down, and as
presently envisaged would not be comprehensible
to any single individual. The result is important, and
has been used in a wide variety of other problems
in group theory, but it might not be correct.

It is of course possible that a much simpler ap-
proach to this particular classification problem
will one day be discovered, but it is equally possi-
ble that it will not. Aschbacher is pessimistic about
the existence of a moderately simple proof, ob-
serving that the estimated overall length of the
(still unwritten) proof has not decreased much
over the last quarter century. It follows from Tur-
ing’s work that there are theorems whose proofs
are far longer than their statements: indeed the ratio
of the two lengths can be arbitrarily large. Ac-
cording to Cohen “the vast majority of even ele-
mentary questions in number theory, of reasonable
complexity, are beyond the reach of any reasoning”
[13]. So we have to anticipate that more and more
such results will be discovered as time passes.

The Consistency of Arithmetic
In this section we argue that the existence of sim-
ple statements that have extraordinarily long proofs
may be of great importance. Gödel taught us that
it is not possible to prove that Peano arithmetic is
consistent, but everyone has taken it for granted
that in fact it is indeed consistent.

Platonistically-inclined mathematicians would
deny the possibility that Peano arithmetic could be
flawed. From Kronecker onwards many consider
that they have a direct insight into the natural
numbers, which guarantees their existence. If the
natural numbers exist and Peano’s axioms describe
properties that they possess then, since the ax-
ioms can be instantiated, they must be consistent.
Often this is dressed up with references to the ex-
pected or intended model of Peano’s axioms, but
expectations or intentions do not by themselves set-
tle anything.

When we delve into history we see many reasons
for doubting claims for certainty, even in mathe-
matics. For many centuries it was thought self-
evident that Euclidean geometry necessarily pro-
vided the correct description of space, but even-
tually Riemann and then Einstein proved this wrong.
The status of the axiom of choice is usually re-
garded as unproblematical nowadays, but there
was a vigorous debate early in the twentieth cen-
tury about its acceptability. Even its inventor, Zer-
melo, eventually agreed that the most compelling
reason to accept it was the fact that without it
mathematicians could not prove large numbers of
results that they needed; see Maddy [19, p. 56].
These doubts have not been resolved, but merely
forgotten, by most of the community. We finally
mention that Hilbert’s confidence about the pos-
sibility of resolving all mathematical problems was
shared by most of his contemporaries, until Gödel
showed that it was unfounded.

It is, in fact, logically possible that Peano arith-
metic is internally inconsistent. There is no evidence
for this, and we do not claim that it is likely to be
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inconsistent, only that it is possible. To investigate
this idea further we consider an example from
group theory. Consider the following list of ax-
ioms.

(1) G is the set of elements considered, and it
is supposed that the elements obey the group ax-
ioms.

(2) G is supposed to be finite but not isomor-
phic to any of the known list of finite simple groups.

(3) G is supposed to be simple. In other words,
if N is a subset that has a certain list of properties
(those of a normal subgroup other than the trivial
subgroup), then N = G.

These axioms can be compared to those of Peano
arithmetic. The last is similar in form to the in-
duction axiom (or axiom schema in first order
logic) in that it refers to an unspecified set with cer-
tain properties, and concludes that it is equal to G
(we assume that one can switch back and forth be-
tween subsets and predicates). Although G is as-
sumed to be finite, its size is not specified, so one
cannot simply enumerate all objects of the above
type, however long the time given: the only way of
understanding the axiom system is via proofs.

The fact that an axiom scheme so similar to
Peano arithmetic might require such a long proof
of its inconsistency (if indeed it is inconsistent, as
most group theorists believe) provides a reason why
we cannot be absolutely sure of the consistency of
Peano arithmetic itself. Perhaps the shortest proof
of an inconsistency in Peano arithmetic is one hun-
dred million pages long, and we will never dis-
cover it. If we were never led into a contradiction,
would the inconsistency matter? We could con-
tinue to prove theorems and derive interesting in-
terconnections between ideas without ever sus-
pecting the awful truth.

Such a situation need not imply that our efforts
were worthless. There are many examples in the
past in which contradictions in axiom systems, or
counterexamples to theorems, once pointed out,
have been rectified. A famous book of Imre Lakatos
is a celebration of the ability of mathematicians to
respond to counterexamples to a sequence of
flawed statements of Euler’s theorem [17]. The
most famous inconsistency was in Frege’s foun-
dations of mathematics, to which Bertrand Russell
found a paradox. Within twenty years the ZFC set
theory removed these particular problems, although
at some cost in terms of elegance. Interesting math-
ematics (certainly in the field of analysis) is re-
markably tolerant of changes in the axiomatic
framework, and can often be rescued from technical
errors, possibly after changing or increasing the
number of assumptions.

Discussion
It seems to the author that the prospects for a
complete proof of the Kepler problem are better

than they are for the classification of finite simple
groups. One day the programs may be rewritten in
a form that permits a formal proof of the correct-
ness of Hales’ theorem. In the Royal Society meet-
ing some mathematicians repeated the well-known
argument that this would still not be satisfactory,
because computer programs are fallible, computer
hardware is fallible, and anyway the computer
might be hit by a cosmic ray during the computa-
tion. These statements are obviously correct, but
it would be absurd to think that similar criticisms
do not apply to human-generated proofs, particu-
larly in the light of the finite simple group experi-
ence. All one can ask of the formal computer ver-
ification of proofs is that they perform better than
human beings, in the sense that they find mistakes
in proofs that humans have missed and that hu-
mans recognize once they are pointed out. In the
field of software and chip design verification this
has already happened, and it is to be expected that
it will become more common in mathematics itself.

A number of mathematicians are very concerned
about where this revolution is leading us. If the goal
of mathematics is understanding, then one cannot
deny that computer-assisted proofs do not supply
it in full measure. But neither does the proof of the
classification of finite simple groups. In both cases
the proofs are only locally checkable, and this pro-
vides no guarantee of global correctness. Many
mathematicians find the prospect of losing this un-
derstanding abhorrent, and their best remedy is to
stick to fields in which such methods are not yet
needed. Fortunately there are vast swathes of the
subject that remain ripe for development by tra-
ditional methods, so they need not worry too much
that their contribution will become unnecessary
within the foreseeable future.

Taking an historical perspective, we can see that
once the number of mathematicians became large
enough, they were almost bound to start produc-
ing a quantity of mathematics that could only be
validated at a collective level. Combine this with the
development of ever more sophisticated computer
software, and the possibility of individuals being
able to understand all aspects of a complex proof
was certain to vanish. The twentieth century pro-
vided both of these conditions for the decisive and
irreversible change in the nature of mathematical
research. Pure mathematics will remain more reli-
able than most other forms of knowledge, but its
claim to a unique status will no longer be sustain-
able. It will be seen as the creation of finite human
beings, liable to error in the same way as all other
activities in which we indulge. Just as in engineer-
ing, mathematicians will have to declare their de-
gree of confidence that certain results are reliable,
rather than being able to declare flatly that the
proofs are correct. Hilbert’s goal of achieving per-
fect certainty by the laying of firm foundations
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died with Gödel’s work, but the problem of com-
plexity would have killed his dreams with equal fi-
nality fifty years later.

We finally ask if there are further crises still to
be faced. One possibility is the discovery of a con-
tradiction in a mathematical argument whose com-
plexity is beyond any yet contemplated. One might
imagine that the contradiction is the result of a mis-
take that is too deep for us to be able to locate it,
even with the aid of computers. This may seem far-
fetched, but a somewhat similar problem has al-
ready arisen in computer chess programs, which
occasionally make moves for which the best chess
grandmasters can find no rationale. The computer
can, of course, only declare that the said move
yielded the highest score out of billions of combi-
nations that it had considered. This does not imply
that the move is indeed the best in the given po-
sition, because the method of scoring positions is
derived from human advice. If such a scenario ma-
terializes, we may finally have to admit to limits
on what our species can aspire to in the mental
realm, as well as in other types of activity.

Whether or not these prognostications prove
correct, the future of pure mathematics is certain
to be very different from its past. In 1875 every suf-
ficiently able mathematician could fully absorb the
proof of most theorems that existed within a few
months. By 1975, a year before the four-colour
theorem was proved, this was not even close to
being true, but it was still the case that some math-
ematicians fully understood the proof of any known
theorem. By 2075 many fields of pure mathemat-
ics will depend upon theorems that no mathe-
matician could fully understand, whether individ-
ually or collectively. Many mathematicians will still
prove theorems by traditional methods, but these
will stand out as landmarks in a much broader
subject. Formal verifications of complex proofs
will be commonplace, but there will also be many
results whose acceptance will owe as much to so-
cial consensus as to rigorous proof. Perhaps by then
the differences between mathematics and other
disciplines will be so much reduced that philo-
sophical discussions of the unique status of math-
ematical entities will no longer seem relevant.
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